Dual-radiator RICH: update

Alessio Del Dotto for the EIC PID/RICH collaboration September 21, 2016

Particle track resolution effects on RICH

Assuming this information, we will use straight line for $\Delta p/p$, with different Δp in order to know a tollerance limit. At small polar angle $\Delta p/p$ is expeted to grow. For $\Delta \theta$ and $\Delta \Phi$ we assume a constant value, again using different values to look at a tolerance limit.

Momentum and angular uncertainties of the tracks


```
Traks generated in GEMC in this way, i.e. at 31 GeV/c: p=\pm \Delta p <option name="BEAM_P" value="pi+, 31*GeV, 15*deg, 0*deg"/>
<option name="SPREAD_P" value="1.16*GeV,0*deg,180*deg"/>
<option name="SPREAD_P" value="3.48*GeV,0*deg,180*deg"/>
```

In addition an angular smearing has been added to the versor of the track entering the RICH, in both polar and azimuthal angle

$$\Delta\theta = \Delta\phi = 0.5, 1, 1.5 \ mrad$$

1 p.e. error contributions

Performances at 15° (aerogel+C2F6) – Δp from red line

- aerogel
- \bullet C_2F_6

Performances at 15° (aerogel+C2F6) – Δp from blue line

- aerogel
- \bullet C_2F_6

Performances at 5° (aerogel+C2F6) – Δp from blue line

Performances at 25° (aerogel+C2F6) – Δp from blue line

Performances at 15° (aerogel+C2F6) – Δp from red line

 N_{σ}^{Ring}

e/pi(gas): 3.23 16 (GeV)

 $\Delta\theta = \Delta\phi = 0.5 \ mrad$

 $\Delta\theta = \Delta\phi = 1. \ mrad$

 $\Delta\theta = \Delta\phi = 1.5 \ mrad$

pi/k(aerogel): 3.89 13 (GeV)

pi/k(gas): 3.29 55 (GeV)

k/p(aerogel): 3.73 22 (GeV)

k/p(gas): 4.99 73 (GeV) (beyond 73 GeV under simulation)

e/pi(gas): 2.99 16 (GeV)

pi/k(aerogel): 3.76 13 (GeV)

3.08

55 (GeV)

k/p(aerogel): 3.37 22 (GeV)

pi/k(gas):

k/p(gas): 4.80 73 (GeV) (beyond 73 GeV under simulation)

e/pi(gas): 2.93 16 (GeV)

pi/k(aerogel): 3.69 13 (GeV)

pi/k(gas): 2.70 55 (GeV)

k/p(aerogel): 3.40 22 (GeV)

k/p(gas): 4.51 73 (GeV) (beyond 73 GeV under simulation)

Performances at 15° (aerogel + C2F6) – Δp from blue line

 $\Delta\theta = \Delta\phi = 0.5 \ mrad$

 $\Delta\theta = \Delta\phi = 1. \ mrad$

 $\Delta\theta = \Delta\phi = 1.5 \ mrad$

 N_{σ}^{Ring}

e/pi(gas): 3.36 16 (GeV)

pi/k(aerogel):

3.78 13 (GeV)

pi/k(gas): 3.11 55 (GeV)

k/p(aerogel): 3.77 22 (GeV)

k/p(gas): 5.07 73 (GeV) (beyond 73 GeV under simulation)

e/pi(gas): 3.13 16 (GeV)

pi/k(aerogel): 3.65 13 (GeV)

pi/k(gas): 3.10 55 (GeV)

k/p(aerogel): 3.43 22 (GeV)

k/p(gas): 4.90 73 (GeV) (beyond 73 GeV under simulation)

e/pi(gas): 2.80 16 (GeV)

pi/k(aerogel): 3.34 13 (GeV)

pi/k(gas): 2.64 55 (GeV)

k/p(aerogel): 3.31 22 (GeV)

k/p(gas): 4.31 73 (GeV) (beyond 73 GeV under simulation)

Comments

- The biggest effect seems to be from the angular uncertainty, at least at this level of Δp
- Enlarge the statistic, to avoid fluctuations
- Next steps:
 - Write the report for the end of my Jlab contract, due to September 30. I will summarize in the document the activity on the dual-RICH.
 - Follow the list of activities proposed for the next year, with particular attention to the photodetector definition

Comments and suggestions recieved during the RICH conference

- Aerogel with n = 1.02 can be made, but due to the lightness of the structure it could be fragile (maybe n = 1.025 is enough using C_2F_6); this could in principle degrade the expected yield performances. To be tested in a real prototype...
- I have checked the N_{ph} with n=1.02 of 4 cm (about 11 from the GEMC simulation) comparing this result with the CLAS12 RICH simulator adapted to our case (by Marco Mirazita): the result is consistent.
- Some interesting preliminary result concerning SiPM as single photon detector has been presented (by Marco Contalbrigo group)

Next steps:

 Write proceeding: the deadline for the proceedings is <u>November 1</u>, <u>2016</u>.